Ziewitz, M. (2017) A not quite random walk: Experimenting with the ethnomethods of the algorithm, Big Data & Society, 4(2), 1-13, https://doi.org/10.1177/2053951717738105
Abstract:
Algorithms have become a widespread trope for making sense of social life. Science, finance, journalism, warfare, and policing—there is hardly anything these days that has not been specified as “algorithmic.” Yet, although the trope has brought together a variety of audiences, it is not quite clear what kind of work it does. Often portrayed as powerful yet inscrutable entities, algorithms maintain an air of mystery that makes them both interesting and difficult to understand. This article takes on this problem and examines the role of algorithms not as techno-scientific objects to be known, but as a figure that is used for making sense of observations. Following in the footsteps of Harold Garfinkel’s tutorial cases, I shall illustrate the implications of this view through an experiment with algorithmic navigation. Challenging participants to go on a walk, guided not by maps or GPS but by an algorithm developed on the spot, I highlight a number of dynamics typical of reasoning with running code, including the ongoing respecification of rules and observations, the stickiness of the procedure, and the selective invocation of the algorithm as an intelligible object. The materials thus provide an opportunity to rethink key issues at the intersection of the social sciences and the computational, including popular concerns with transparency, accountability, and ethics.
Malte Ziewitz is an Assistant Professor and Director of Undergraduate Studies at Department of Science & Technology Studies, Cornell University.